Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ds_interview_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/962 -
Telegram Group & Telegram Channel
📱 Как кросс-валидация применяется к большим нейросетям (например, GPT-подобным моделям) с миллионами или миллиардами параметров

Полноценная k-фолд кросс-валидация в контексте таких моделей обычно непрактична из-за колоссальных затрат времени и вычислительных ресурсов. Однако есть ряд подходов, позволяющих сбалансировать проверку качества модели и реалистичность обучения:

❗️ Возможные стратегии

1. Уменьшенное значение k (Reduced k)

Часто используют просто отложенную выборку (hold-out) или 2-фолд кросс-валидацию. Иногда применяют случайные разбиения несколько раз вместо традиционных 5-10 фолдов.

2. Чекпойнты и частичное повторное использование весов

Хотя обучение на каждом фолде требует разных данных, можно:
🟠дообучать модель с уже натренированными весами,
🟠использовать подходы transfer learning или fine-tuning.

Это не полностью корректно, но снижает затраты.

3. Параллельное и распределённое обучение

Если есть достаточное количество ресурсов (кластер, TPU/облачные GPU), фолды можно обучать параллельно.

4. Субсэмплирование данных

При очень больших датасетах можно делать случайную подвыборку на каждом фолде. Это сохраняет распределение, но уменьшает общий объём обучающих данных.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/962
Create:
Last Update:

📱 Как кросс-валидация применяется к большим нейросетям (например, GPT-подобным моделям) с миллионами или миллиардами параметров

Полноценная k-фолд кросс-валидация в контексте таких моделей обычно непрактична из-за колоссальных затрат времени и вычислительных ресурсов. Однако есть ряд подходов, позволяющих сбалансировать проверку качества модели и реалистичность обучения:

❗️ Возможные стратегии

1. Уменьшенное значение k (Reduced k)

Часто используют просто отложенную выборку (hold-out) или 2-фолд кросс-валидацию. Иногда применяют случайные разбиения несколько раз вместо традиционных 5-10 фолдов.

2. Чекпойнты и частичное повторное использование весов

Хотя обучение на каждом фолде требует разных данных, можно:
🟠дообучать модель с уже натренированными весами,
🟠использовать подходы transfer learning или fine-tuning.

Это не полностью корректно, но снижает затраты.

3. Параллельное и распределённое обучение

Если есть достаточное количество ресурсов (кластер, TPU/облачные GPU), фолды можно обучать параллельно.

4. Субсэмплирование данных

При очень больших датасетах можно делать случайную подвыборку на каждом фолде. Это сохраняет распределение, но уменьшает общий объём обучающих данных.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/962

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Can I mute a Telegram group?

In recent times, Telegram has gained a lot of popularity because of the controversy over WhatsApp’s new privacy policy. In January 2021, Telegram was the most downloaded app worldwide and crossed 500 million monthly active users. And with so many active users on the app, people might get messages in bulk from a group or a channel that can be a little irritating. So to get rid of the same, you can mute groups, chats, and channels on Telegram just like WhatsApp. You can mute notifications for one hour, eight hours, or two days, or you can disable notifications forever.

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Библиотека собеса по Data Science | вопросы с собеседований from sg


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA